论文标题
双变量近似过程的Lebesgue常数的渐近学
Asymptotics of the Lebesgue constants for bivariate approximation processes
论文作者
论文摘要
在本文中,渐近公式是针对与$ \ ell_1 $ - 傅立叶级数相关的三个特殊近似过程产生的Lebesgue常数。特别是,我们考虑基于lissajous-chebyshev节点点的拉格朗日插值多项式,这是由各向异性扩张的菱形产生的傅立叶级数的部分总和以及相应的离散偏和分和。
In this paper asymptotic formulas are given for the Lebesgue constants generated by three special approximation processes related to the $\ell_1$-partial sums of Fourier series. In particular, we consider the Lagrange interpolation polynomials based on the Lissajous-Chebyshev node points, the partial sums of the Fourier series generated by the anisotropically dilated rhombus, and the corresponding discrete partial sums.