论文标题

基于添加剂秘密共享的隐私图像检索

Privacy-Preserving Image Retrieval Based on Additive Secret Sharing

论文作者

Xia, Zhihua, Gu, Qi, Xiong, Lizhi, Zhou, Wenhao, Weng, Jian

论文摘要

数字图像的快速增长激发了个人和组织将图像上传到云服务器。为了保留隐私,图像所有者更喜欢在上传前加密图像,但是它将很大程度上限制图像的有效用法。大量有关基于内容的图像检索(PPCBIR)的现有方案试图在安全和检索能力之间寻求平衡。但是,与CBIR中的高级技术(例如卷积神经网络(CNN))相比,现有的PPCBIR方案在精度和效率方面都缺乏。借助更多的云服务提供商,多个云服务器提供的协作安全图像检索服务将成为可能。在本文中,受添加秘密共享技术的启发,我们提出了一系列以提高效率的数字和矩阵的加法安全计算协议,然后在PPCBIR中显示其应用。具体来说,我们提取CNN功能,降低功能的尺寸,并借助我们的协议安全地构建索引,其中包括在明文域中的图像检索的完整过程。实验和安全分析证明了我们计划的效率,准确性和安全性。

The rapid growth of digital images motivates individuals and organizations to upload their images to the cloud server. To preserve privacy, image owners would prefer to encrypt the images before uploading, but it would strongly limit the efficient usage of images. Plenty of existing schemes on privacy-preserving Content-Based Image Retrieval (PPCBIR) try to seek the balance between security and retrieval ability. However, compared to the advanced technologies in CBIR like Convolutional Neural Network (CNN), the existing PPCBIR schemes are far deficient in both accuracy and efficiency. With more cloud service providers, the collaborative secure image retrieval service provided by multiple cloud servers becomes possible. In this paper, inspired by additive secret sharing technology, we propose a series of additive secure computing protocols on numbers and matrices with better efficiency, and then show their application in PPCBIR. Specifically, we extract CNN features, decrease the dimension of features and build the index securely with the help of our protocols, which include the full process of image retrieval in the plaintext domain. The experiments and security analysis demonstrate the efficiency, accuracy, and security of our scheme.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源