论文标题
注意 - 萨姆:视觉目光的视觉单眼学习
Attention-SLAM: A Visual Monocular SLAM Learning from Human Gaze
论文作者
论文摘要
本文提出了一种新颖的同时定位和映射(SLAM)方法,即注意 - 链接,该方法通过将视觉显着性模型(Salnavnet)与传统的单眼视觉大满贯结合在一起来模拟人类导航模式。在优化过程中,大多数SLAM方法将从图像提取的所有特征视为同等的重要性。但是,在人类导航过程中,场景中的显着特征点具有更大的影响。因此,我们首先提出了一个称为Salvavnet的视觉显着性模型,其中我们引入了相关模块,并提出了一个自适应指数移动平均值(EMA)模块。这些模块减轻了中心偏置,以使Salnavnet生成的显着图更加注意相同的显着物体。此外,显着性图模拟了人类行为,以改进大满贯结果。从显着区域提取的特征点在优化过程中具有更大的重要性。我们将语义显着性信息添加到Euroc数据集中,以生成开源的显着大满贯数据集。全面的测试结果证明,在大多数测试案例中,注意力 - 链接在效率,准确性和鲁棒性方面都优于直接稀疏探光(DSO),ORB-SLAM和显着DSO等基准。
This paper proposes a novel simultaneous localization and mapping (SLAM) approach, namely Attention-SLAM, which simulates human navigation mode by combining a visual saliency model (SalNavNet) with traditional monocular visual SLAM. Most SLAM methods treat all the features extracted from the images as equal importance during the optimization process. However, the salient feature points in scenes have more significant influence during the human navigation process. Therefore, we first propose a visual saliency model called SalVavNet in which we introduce a correlation module and propose an adaptive Exponential Moving Average (EMA) module. These modules mitigate the center bias to enable the saliency maps generated by SalNavNet to pay more attention to the same salient object. Moreover, the saliency maps simulate the human behavior for the refinement of SLAM results. The feature points extracted from the salient regions have greater importance in optimization process. We add semantic saliency information to the Euroc dataset to generate an open-source saliency SLAM dataset. Comprehensive test results prove that Attention-SLAM outperforms benchmarks such as Direct Sparse Odometry (DSO), ORB-SLAM, and Salient DSO in terms of efficiency, accuracy, and robustness in most test cases.