论文标题
schwarschild时空的抗原鉴定
Antipodal identification in the Schwarschild spacetime
论文作者
论文摘要
通过Möbius的转变,我们研究了诸如拓扑,LIGTH锥,地平线,曲率奇异性,持续的Schwarzschild线的线路,$ r $和$ r $和$ t $,null Geodesics和null Geodesics和Spacetime $(SKS/2)^\ Prime $ prime $ prime cy schield-pripe schield-i)schwarz s in schwarz s y schwarz s y schwarz schwarz schwarz schwarz schwarz schwarz and schwarz schwarz schwarz schwarz s s schwarz ($ SKS $)时空,ii)抑制随后的圆锥形奇异性。特别是,人们获得了一个非简单连接的拓扑:$(SKS/2)^\ prime \ cong \ mathbb {r}^{2*} \ times s^2 $,并且正如预期的那样,是弯曲的灯锥。
Through a Möbius transformation, we study aspects like topology, ligth cones, horizons, curvature singularity, lines of constant Schwarzschild coordinates $r$ and $t$, null geodesics, and transformed metric, of the spacetime $(SKS/2)^\prime$ that results from: i) the antipode identification in the Schwarzschild-Kruskal-Szekeres ($SKS$) spacetime, and ii) the suppression of the consequent conical singularity. In particular, one obtains a non simply-connected topology: $(SKS/2)^\prime\cong \mathbb{R}^{2*}\times S^2$ and, as expected, bending light cones.