论文标题
低复杂性查找表辅助软输出半决赛放松基于尼奎斯信号检测器的速度快
Low Complexity Lookup Table Aided Soft Output Semidefinite Relaxation based Faster-than-Nyquist Signaling Detector
论文作者
论文摘要
频谱稀缺需要创新,光谱效率的策略,以满足对高数据速率的不断增长的需求。比尼奎斯特(FTN)更快的信号传导是一种引人注目的光谱传输方法,可将传输数据符号推向奈奎斯特极限,提供增强的光谱效率(SE)。尽管FTN信号传导保持与Nyquist信号相同的能量和带宽,但它引入了增加的复杂性,尤其是在较高的调制水平下。这种复杂性主要源于检测过程,该过程旨在减轻FTN信号产生的故意隔膜干扰。另一个挑战涉及生成可靠的对数可能性比率(LLRS)对于软通道解码器至关重要的。在这项研究中,我们介绍了一个基于Soft Semide Semideation(SOSDR)的亚最佳FTN探测器的辅助表(LUT)辅助软输出半决赛(SOSDR),可以将其扩展到更高的调制水平。考虑到与软值产生相关的可忽略不计的复杂性,该检测器具有多项式计算复杂性。我们的研究评估了该软输出探测器的性能与最佳FTN检测器,Bahl,Cocke,Jelinek和Raviv(BCJR)算法的性能。基于我们的Lut Adider的半决赛(SDR)FTN信号检测器产生的可能性值在编码方案中显示出有希望的生存能力。
Spectrum scarcity necessitates innovative, spectral-efficient strategies to meet the ever-growing demand for high data rates. Faster-than-Nyquist (FTN) signaling emerges as a compelling spectral-efficient transmission method that pushes transmit data symbols beyond the Nyquist limit, offering enhanced spectral efficiency (SE). While FTN signaling maintains SE with the same energy and bandwidth as the Nyquist signaling, it introduces increased complexity, particularly at higher modulation levels. This complexity predominantly arises from the detection process, which seeks to mitigate the intentional intersymbol interference generated by FTN signaling. Another challenge involves the generation of reliable log-likelihood ratios (LLRs) vital for soft channel decoders. In this study, we introduce a lookup table (LUT) aided soft output semidefinite relaxation (soSDR) based sub-optimal FTN detector, which can be extended to higher modulation levels. This detector possesses polynomial computational complexity, given the negligible complexity associated with soft value generation. Our study assesses the performance of this soft output detector against that of the optimal FTN detector, Bahl, Cocke, Jelinek and Raviv (BCJR) algorithm as the benchmark. The likelihood values produced by our LUT aided semidefinite relaxation (SDR) based FTN signaling detector show promising viability in coded scenario.