论文标题

中央旋转系统中使用Grover的算法进行编号分区

Number Partitioning with Grover's Algorithm in Central Spin Systems

论文作者

Anikeeva, Galit, Marković, Ognjen, Borish, Victoria, Hines, Jacob A., Rajagopal, Shankari V., Cooper, Eric S., Periwal, Avikar, Safavi-Naeini, Amir, Davis, Emily J., Schleier-Smith, Monika

论文摘要

许多概念上重要的量子算法依赖于称为甲骨文的黑盒设备,通常在不知道算法打算解决问题的答案的情况下很难构造。一个值得注意的例子是Grover的搜索算法。在这里,我们建议Grover搜索解决方案,以解决一类NP完整决策问题,称为子集总和问题,包括数字分区的特殊情况。每个问题实例都在一组Qubits与中央旋转或玻色子的耦合中编码,该Qubits的耦合可以实现Oracle而不知识的解决方案。该算法在分区问题的计算复杂性中提供了跨已知相变的量子加速,我们在模拟性能中确定了相变的签名。尽管我们的算法的幼稚实现需要一个光谱分辨率,该分辨率呈指数缩放,以实现NP完整问题的系统大小,但我们还提出了一种递归算法,以实现可扩展性。我们提出和分析具有冷原子的实施方案,包括Rydberg-roTOM和腔QED平台。

Numerous conceptually important quantum algorithms rely on a black-box device known as an oracle, which is typically difficult to construct without knowing the answer to the problem that the algorithm is intended to solve. A notable example is Grover's search algorithm. Here we propose a Grover search for solutions to a class of NP-complete decision problems known as subset sum problems, including the special case of number partitioning. Each problem instance is encoded in the couplings of a set of qubits to a central spin or boson, which enables a realization of the oracle without knowledge of the solution. The algorithm provides a quantum speedup across a known phase transition in the computational complexity of the partition problem, and we identify signatures of the phase transition in the simulated performance. Whereas the naive implementation of our algorithm requires a spectral resolution that scales exponentially with system size for NP-complete problems, we also present a recursive algorithm that enables scalability. We propose and analyze implementation schemes with cold atoms, including Rydberg-atom and cavity-QED platforms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源