论文标题
Riemann Zeta功能的非平凡零的谐波总和
A harmonic sum over nontrivial zeros of the Riemann zeta-function
论文作者
论文摘要
我们考虑总和1/γ$,其中$γ$在riemann zeta-function的非平凡零的尺寸上以$(0,t] $为准),并考虑总和作为$ t \ to \ infty $的行为。 \ log^2(t/2π),$总和可以使用具有错误$ O((\ log log t)/t^2)的方法来表达的$ h \约-0.0171594 $。
We consider the sum $\sum 1/γ$, where $γ$ ranges over the ordinates of nontrivial zeros of the Riemann zeta-function in an interval $(0,T]$, and consider the behaviour of the sum as $T \to\infty$. We show that, after subtracting a smooth approximation $\frac{1}{4π} \log^2(T/2π),$ the sum tends to a limit $H \approx -0.0171594$ which can be expressed as an integral. We calculate $H$ to high accuracy, using a method which has error $O((\log T)/T^2)$. Our results improve on earlier results by Hassani and other authors.