论文标题

带电的1D的离散到核电融合,an灭

Discrete-to-continuum convergence of charged particles in 1D with annihilation

论文作者

van Meurs, Patrick, Peletier, Mark A., Pozar, Norbert

论文摘要

我们考虑一个由静电相互作用驱动的实际线路上移动的带电粒子系统。由于我们考虑了这两个迹象的指控,因此可能会在有限的时间内发生碰撞。碰撞后,某些碰撞颗粒被有效从系统中移除(歼灭)。我们想到的两个应用是金属中的涡流和位错。 在本文中,我们达到了两个目标。首先,我们为使用an灭的相互作用粒子系统开发了严格的解决方案概念。这里的主要创新是仔细管理两个以上粒子组的歼灭,我们表明,通过证明存在,唯一性和对初始数据的持续依赖性,定义是一致的。证明依赖于几乎碰撞的ode轨迹的详细分析,以及根据其元素矩的矢量重新分析向量的重新分析。 其次,我们将其传递到许多粒子极限(离散到核),并恢复粒子密度的预期限制方程。由于奇异的相互作用和歼灭规则,因此不适用于离散限制的标准证明技术。特别是,措施的框架似乎不合适。取而代之的是,我们使用一维功能,即粒子系统和极限PDE都可以根据汉密尔顿 - 雅各比方程来表征。尽管我们的证明遵循了此类方程式的标准限制程序,但现有结果的新颖性在于允许通过在粘度解决方案的定义中利用选择自由来实现粒子系统中更强的奇异性。

We consider a system of charged particles moving on the real line driven by electrostatic interactions. Since we consider charges of both signs, collisions might occur in finite time. Upon collision, some of the colliding particles are effectively removed from the system (annihilation). The two applications we have in mind are vortices and dislocations in metals. In this paper we reach two goals. First, we develop a rigorous solution concept for the interacting particle system with annihilation. The main innovation here is to provide a careful management of the annihilation of groups of more than two particles, and we show that the definition is consistent by proving existence, uniqueness, and continuous dependence on initial data. The proof relies on a detailed analysis of ODE trajectories close to collision, and a reparametrization of vectors in terms of the moments of their elements. Secondly, we pass to the many-particle limit (discrete-to-continuum), and recover the expected limiting equation for the particle density. Due to the singular interactions and the annihilation rule, standard proof techniques of discrete-to-continuum limits do not apply. In particular, the framework of measures seems unfit. Instead, we use the one-dimensional feature that both the particle system and the limiting PDE can be characterized in terms of Hamilton--Jacobi equations. While our proof follows a standard limit procedure for such equations, the novelty with respect to existing results lies in allowing for stronger singularities in the particle system by exploiting the freedom of choice in the definition of viscosity solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源