论文标题
三维相互作用的狄拉克液体中的紧急手性对称性
Emergent chiral symmetry in a three-dimensional interacting Dirac liquid
论文作者
论文摘要
我们计算了强力率高的局部电子相互作用对三维四成分无质量零毛毛部费米子的影响,在非互动系统中,该系统具有微观全局u(1)$ \ otimes $ su(2)手性符号。提出了这种手性狄拉克激发的混凝土晶格实现,并通过执行由\ emph {small}参数$ε$的$ plocation $ε= d-1 $控制的现场理论重新分析组(RG)分析来研究电子 - 电子相互作用的作用。除了非互动的高斯固定点外,系统还支持四个量子关键点和四个双智力点,以非呈差异相互作用耦合$ \simε$。即使在相互作用模型中不存在手性对称性,但在各种RG固定点(作为新兴现象)下(部分或完全)的对称性也会恢复。全球相图的代表性削减显示标量和伪级激体和超导的汇合(例如$ s $ - 波和$ p $ - 波$ p $ - 波)的批量订购阶段,表现出(a)手性u(a)手性u(1)对称性的对称性的对称性互动和(b)pseers sepse sepsears subers sups sude sud(b)pseers sue(b)pseers sue(b)2)具有诱人相互作用的激子和超导质量。最后,我们扰动地研究\ emph {弱}旋转对称性破裂对各种RG固定点的稳定性的影响。
We compute the effects of strong Hubbardlike local electronic interactions on three-dimensional four-component massless Dirac fermions, which in a noninteracting system possess a microscopic global U(1)$\otimes$SU(2) chiral symmetry. A concrete lattice realization of such chiral Dirac excitations is presented, and the role of electron-electron interactions is studied by performing a field theoretic renormalization group (RG) analysis, controlled by a \emph{small} parameter $ε$ with $ε=d-1$, about the lower-critical one spatial dimension. Besides the noninteracting Gaussian fixed point, the system supports four quantum critical and four bicritical points at nonvanishing interaction couplings $\sim ε$. Even though the chiral symmetry is absent in the interacting model, it gets restored (either partially or fully) at various RG fixed points as emergent phenomena. A representative cut of the global phase diagram displays a confluence of scalar and pseudoscalar excitonic and superconducting (such as the $s$-wave and $p$-wave) mass ordered phases, manifesting restoration of (a) chiral U(1) symmetry between two excitonic masses for repulsive interactions and (b) pseudospin SU(2) symmetry between scalar or pseudoscalar excitonic and superconducting masses for attractive interactions. Finally, we perturbatively study the effects of \emph{weak} rotational symmetry breaking on the stability of various RG fixed points.