论文标题

文本生成的现代方法

Modern Methods for Text Generation

论文作者

Montesinos, Dimas Munoz

论文摘要

合成文本生成具有挑战性,成功率有限。最近,一种称为“变形金刚”的新体系结构允许机器学习模型了解更好的顺序数据,例如翻译或摘要。 Bert和GPT-2使用核心中的变压器,在文本分类,翻译和NLI任务等任务中表现出色。在本文中,我们分析了算法并比较其在文本生成任务中的输出质量。

Synthetic text generation is challenging and has limited success. Recently, a new architecture, called Transformers, allow machine learning models to understand better sequential data, such as translation or summarization. BERT and GPT-2, using Transformers in their cores, have shown a great performance in tasks such as text classification, translation and NLI tasks. In this article, we analyse both algorithms and compare their output quality in text generation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源