论文标题
狄拉克方程式和majoraana dirac方程
The Dirac Equation and the Majorana Dirac Equation
论文作者
论文摘要
我们讨论了狄拉克方程的结构,以及在这种情况下如何自然出现nilpotent和major骨运营商。这提供了Kauffman在离散物理,迭代和Majoraana Fermions上的工作与尼尔植物结构的工作与彼得·罗兰兹的狄拉克方程之间的联系。我们在一个时间的一维和三个维度的空间中,在Majoraana Dirac方程的分裂四元中表达了一个表达。 Majoriawana发现了一个可以完全在实际数字上表达的Dirac方程式。这使他推测他的狄拉克方程式版本的解决方案将对应于他们自己的抗粒子的粒子。本文的目的是检查该Majorana-Dirac方程的结构,并通过使用Nilpotent技术来找到基本的解决方案。我们在这个目标方面取得了成功,并描述了我们的结果。
We discuss the structure of the Dirac equation and how the nilpotent and the Majorana operators arise naturally in this context. This provides a link between Kauffman's work on discrete physics, iterants and Majorana Fermions and the work on nilpotent structures and the Dirac equation of Peter Rowlands. We give an expression in split quaternions for the Majorana Dirac equation in one dimension of time and three dimensions of space. Majorana discovered a version of the Dirac equation that can be expressed entirely over the real numbers. This led him to speculate that the solutions to his version of the Dirac equation would correspond to particles that are their own anti-particles. It is the purpose of this paper to examine the structure of this Majorana-Dirac Equation, and to find basic solutions to it by using the nilpotent technique. We succeed in this aim and describe our results.