论文标题
$(k+1)$ - 三角矩阵组的有效矩阵和有限posets的发病率
$(k+1)$-potent Matrices in triangular matrix Groups and Incidence Algebras of Finite Posets
论文作者
论文摘要
令$ \ mathbb {k} $为一个字段,以至于$ char(\ mathbb {k})\ nmid k $和$ char(\ mathbb {k})\ nmid k+1 $。我们描述了上层三角矩阵组上的所有$(k+1)$ - 有效的矩阵。如果$ \ mathbb {k} $是一个有限字段,我们将展示如何计算三角形矩阵组中的这些元素的数量,并使用此公式来计算$(k+1)$的数量 - 在发病率代数$ \ mathcal $ \ mathcal {i}(x,x,x,\ nathbbbbbbb {k k {k e x $ x)中的有效元素 -
Let $\mathbb{K}$ be a field such that $char(\mathbb{K})\nmid k$ and $char(\mathbb{K})\nmid k+1$. We describe all $(k+1)$-potent matrices over the group of upper triangular matrix. In the case that $\mathbb{K}$ is a finite field we show how to compute the number of these elements in triangular matrix groups and use this formula to compute the number of $(k+1)$-potent elements in the Incidence Algebra $\mathcal{I}(X,\mathbb{K})$ where $X$ is a finite poset.