论文标题

分布式网络的实时学习

Distributed Networked Real-time Learning

论文作者

Garcia, Alfredo, Wang, Luochao, Huang, Jeff, Hong, Lingzhou

论文摘要

许多机器学习算法是在假设数据集已经以批处理形式可用的。然而,在许多应用程序域中,数据仅通过在不同地理位置的计算节点依次加班。在本文中,我们考虑了无法及时将流数据传输到单个位置时学习模型的问题。在这种情况下,需要一个用于学习的分布式体系结构,该体系结构依靠一个互连的“本地”节点网络。我们提出了一个分布式方案,其中每个局部节点基于本地数据流实现随机梯度更新。为了确保强大的估计,使用网络正则惩罚来维持模型集合中的内聚力度量。我们显示了整体平均值近似于固定点,并表征了单个模型与集成平均值不同的程度。我们将结果与联合学习的结果进行比较,以结论提出的方法对数据流中的异质性(数据速率和估计质量)更为强大。我们用基于卷积神经网络的深度学习模型应用了图像分类的应用来说明结果。

Many machine learning algorithms have been developed under the assumption that data sets are already available in batch form. Yet in many application domains data is only available sequentially overtime via compute nodes in different geographic locations. In this paper, we consider the problem of learning a model when streaming data cannot be transferred to a single location in a timely fashion. In such cases, a distributed architecture for learning relying on a network of interconnected "local" nodes is required. We propose a distributed scheme in which every local node implements stochastic gradient updates based upon a local data stream. To ensure robust estimation, a network regularization penalty is used to maintain a measure of cohesion in the ensemble of models. We show the ensemble average approximates a stationary point and characterize the degree to which individual models differ from the ensemble average. We compare the results with federated learning to conclude the proposed approach is more robust to heterogeneity in data streams (data rates and estimation quality). We illustrate the results with an application to image classification with a deep learning model based upon convolutional neural networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源