论文标题

$ 3 $二维DG Sklyanin代数的同源性能

Homological properties of $3$-dimensional DG Sklyanin algebras

论文作者

Mao, Xuefeng, Wang, Huan., Wang, Xingting, Yang, Yinuo, Zhang, Maoyun

论文摘要

在本文中,我们介绍了DG Sklyanin代数的概念,这些代数是连接的Cochain DG代数,其基本分级代数为Sklyanin代数。令$ \ Mathcal {a} $为$ 3 $ - 二维DG Sklyanin代数,带有$ \ Mathcal {a}^{\#} = s_ {a,b,c} $,$(a,a,b,b,b,b,c)\ in \ bbb in \ bbb {p} $ \ mathfrak {d} = \ {(1,0,0),(0,1,0),(0,0,1)\} \ sqcup \ {(a,a,b,c)| a^3 = b^3 = b^3 = c^3 = c^3 \}。尤其是,我们找出分别为calabi-yau,koszul,gorenstein和同源性平滑的$ \ mathcal {a} $的条件。

In this paper, we introduce the notion of DG Sklyanin algebras, which are connected cochain DG algebras whose underlying graded algebras are Sklyanin algebras. Let $\mathcal{A}$ be a $3$-dimensional DG Sklyanin algebra with $\mathcal{A}^{\#}=S_{a,b,c}$, where $(a,b,c)\in \Bbb{P}_k^2-\mathfrak{D}$ and $$\mathfrak{D}=\{(1,0,0), (0,1,0),(0,0,1)\}\sqcup\{(a,b,c)|a^3=b^3=c^3\}.$$ We systematically study its differential structures and various homological properties. Especially, we figure out the conditions for $\mathcal{A}$ to be Calabi-Yau, Koszul, Gorenstein and homologically smooth, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源