论文标题

带经典噪音的量子动态

Qubit dynamics with classical noise

论文作者

Huang, Qin, Merkli, Marco

论文摘要

我们根据schrödinger方程来研究量子量的演变,其中包含由随机对角线和外部基质矩阵元素模拟的噪声项的哈密顿式术语。我们表明,噪声平均量子密度矩阵会收敛到最终状态,在很大程度上$t。$ $t。$ invergence速度为$ 1/t $的多项式,取决于噪声概率密度及其低频行为的规律性。我们明确评估最终状态。我们表明,在弱和强的非对角线噪声方面,该过程分别在能量(本地化)和分离式基础中实现了dephasing通道。

We study the evolution of a qubit evolving according to the Schrödinger equation with a Hamiltonian containing noise terms, modeled by random diagonal and off-diagonal matrix elements. We show that the noise-averaged qubit density matrix converges to a final state, in the limit of large times $t.$ The convergence speed is polynomial in $1/t$, with a power depending on the regularity of the noise probability density and its low frequency behaviour. We evaluate the final state explicitly. We show that in the regimes of weak and strong off-diagonal noise, the process implements the dephasing channel in the energy- (localized) and the delocalized basis, respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源