论文标题
过渡性剪切流的反馈控制:传感器选择用于性能恢复
Feedback control of transitional shear flows: Sensor selection for performance recovery
论文作者
论文摘要
传感器和执行器的选择和放置是决定使用反馈控制可以实现的性能的重要因素。在控制过渡流的背景下,这种确定尤其重要,但很困难。线性化的Navier-Stokes方程的高度非正常性使得流动对小扰动敏感,并可能对闭环流控制性能产生巨大的性能。全信息控制器(例如线性二次调节器(LQR))在减少瞬态能量生长和抑制过渡方面已经表现出一些成功。但是,具有可比性能的基于传感器的输出反馈控制器很难实现。在这项研究中,我们提出了两种用于传感器选择的方法,可以使基于传感器的输出反馈控制器恢复全信息控制性能:一种基于稀疏控制器合成方法,另一种基于平衡的截断程序以减少模型。两种方法都在壁上的亚临界通道流动的线性和非线性模拟中研究,并在壁上进行吹气。我们发现,通过这两种方法识别的传感器配置都允许基于传感器的静态输出反馈LQR控制器恢复全信息LQR控制性能,既可以减少瞬态能量增长又抑制过渡。此外,我们的结果表明,传感器选择方法和结果控制器对雷诺数的数量变化都表现出稳健性。
The choice and placement of sensors and actuators is an essential factor determining the performance that can be realized using feedback control. This determination is especially important, but difficult, in the context of controlling transitional flows. The highly non-normal nature of the linearized Navier-Stokes equations makes the flow sensitive to small perturbations, with potentially drastic performance consequences on closed-loop flow control performance. Full-information controllers, such as the linear quadratic regulator (LQR), have demonstrated some success in reducing transient energy growth and suppressing transition; however, sensor-based output feedback controllers with comparable performance have been difficult to realize. In this study, we propose two methods for sensor selection that enable sensor-based output feedback controllers to recover full-information control performance: one based on a sparse controller synthesis approach, and one based on a balanced truncation procedure for model reduction. Both approaches are investigated within linear and nonlinear simulations of a sub-critical channel flow with blowing and suction actuation at the walls. We find that sensor configurations identified by both approaches allow sensor-based static output feedback LQR controllers to recover full-information LQR control performance, both in reducing transient energy growth and suppressing transition. Further, our results indicate that both the sensor selection methods and the resulting controllers exhibit robustness to Reynolds number variations.