论文标题

Gibbs指出,代数动力学和广义Riesz系统

Gibbs states, algebraic dynamics and generalized Riesz systems

论文作者

Bagarello, Fabio, Inoue, Hiroshi, Trapani, Camillo

论文摘要

在pt-Quantum力学中,物理系统动力学的发电机不一定是自动伴侣汉密尔顿人。现在很明显,这种选择并不能阻止获得统一的时间演化和哈密顿量的真实范围,即使在大多数情况下,人们也被迫处理生物持续的套件,而不是与特征媒体的正顺序基础进行处理。在本文中,我们考虑了Heisenberg代数动力学的一些扩展版本,并将此分析与某些广义版本的Gibbs状态及其相关的KMS样条件联系起来。我们还讨论了在我们的背景下,tomita-takesaki理论的一些初步方面。

In PT-quantum mechanics the generator of the dynamics of a physical system is not necessarily a self-adjoint Hamiltonian. It is now clear that this choice does not prevent to get a unitary time evolution and a real spectrum of the Hamiltonian, even if, most of the times, one is forced to deal with biorthogonal sets rather than with on orthonormal basis of eigenvectors. In this paper we consider some extended versions of the Heisenberg algebraic dynamics and we relate this analysis to some generalized version of Gibbs states and to their related KMS-like conditions. We also discuss some preliminary aspects of the Tomita-Takesaki theory in our context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源