论文标题

使用自动编码器深度学习中的地面真相和噪声模型中的伪影

Artefact removal in ground truth and noise model deficient sub-cellular nanoscopy images using auto-encoder deep learning

论文作者

Jadhav, Suyog, Acuña, Sebastian, Agarwal, Krishna, prasad, Dilip K.

论文摘要

在实际实验中获得的监督训练数据集或使用已知噪声模型合成的可用性,可以使用深度学习的图像去索或伪影去除。通过统计分析技术从显微镜视频产生的纳米镜检查(超分辨率光学显微镜)图像都无法满足两个条件。由于几个物理约束,无法测量受监督的数据集。由于数据的非线性时空混合以及来自荧光分子的波动的有价值的统计量,这些波动与纳米镜图像中与噪声统计,噪声或伪影模型竞争的荧光分子无法明确学习。因此,此类问题给深度学习带来了前所未有的挑战。在这里,我们提出了一种深度学习自动编码器体系结构的强大而多功能的仿真监督训练方法,用于生物样品内部细胞结构的高度挑战性纳米镜检查图像。我们显示了一种纳米镜方法的概念证明,并研究了在模拟审议训练中未包含的结构,噪声模型和纳米镜算法的概括范围。我们还研究了各种损失功能和学习模型,并讨论了纳米镜像图像现有性能指标的局限性。我们为纳米镜检查中这个高度挑战性和未解决的问题产生了宝贵的见解,并为在生命科学的纳米镜检查中应用深度学习问题奠定了基础。

Image denoising or artefact removal using deep learning is possible in the availability of supervised training dataset acquired in real experiments or synthesized using known noise models. Neither of the conditions can be fulfilled for nanoscopy (super-resolution optical microscopy) images that are generated from microscopy videos through statistical analysis techniques. Due to several physical constraints, supervised dataset cannot be measured. Due to non-linear spatio-temporal mixing of data and valuable statistics of fluctuations from fluorescent molecules which compete with noise statistics, noise or artefact models in nanoscopy images cannot be explicitly learnt. Therefore, such problem poses unprecedented challenges to deep learning. Here, we propose a robust and versatile simulation-supervised training approach of deep learning auto-encoder architectures for the highly challenging nanoscopy images of sub-cellular structures inside biological samples. We show the proof of concept for one nanoscopy method and investigate the scope of generalizability across structures, noise models, and nanoscopy algorithms not included during simulation-supervised training. We also investigate a variety of loss functions and learning models and discuss the limitation of existing performance metrics for nanoscopy images. We generate valuable insights for this highly challenging and unsolved problem in nanoscopy, and set the foundation for application of deep learning problems in nanoscopy for life sciences.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源