论文标题
FLFE:一个沟通效率和隐私的联合功能工程框架
FLFE: A Communication-Efficient and Privacy-Preserving Federated Feature Engineering Framework
论文作者
论文摘要
功能工程是使用域知识通过数据挖掘技术从原始数据中提取功能的过程,并且是提高机器学习算法性能的关键步骤。在多方功能工程方案(功能存储在许多不同的物联网设备中)中,直接和无限的多元特征转换将迅速耗尽内存,功率和带宽设备的设备,更不用说受到威胁的信息安全性了。鉴于此,我们提出了一个名为FLFE的框架,以进行隐私保护和传播的多方特征转换。该框架预先学习该功能的模式,以直接判断转换在功能上的有用性。探索了新的有用功能,该框架为精心设计的功能交换机制抛弃了基于加密的算法,该算法在很大程度上降低了机密性的前提下的通信开销。我们在开源和现实世界的数据集上进行了实验,从而验证了FLFE与基于评估的方法的可比性,以及更高的功效。
Feature engineering is the process of using domain knowledge to extract features from raw data via data mining techniques and is a key step to improve the performance of machine learning algorithms. In the multi-party feature engineering scenario (features are stored in many different IoT devices), direct and unlimited multivariate feature transformations will quickly exhaust memory, power, and bandwidth of devices, not to mention the security of information threatened. Given this, we present a framework called FLFE to conduct privacy-preserving and communication-preserving multi-party feature transformations. The framework pre-learns the pattern of the feature to directly judge the usefulness of the transformation on a feature. Explored the new useful feature, the framework forsakes the encryption-based algorithm for the well-designed feature exchange mechanism, which largely decreases the communication overhead under the premise of confidentiality. We made experiments on datasets of both open-sourced and real-world thus validating the comparable effectiveness of FLFE to evaluation-based approaches, along with the far more superior efficacy.