论文标题

形状的基于曲率和密度的生成表示

A curvature and density-based generative representation of shapes

论文作者

Ye, Zi, Umetani, Nobuyuki, Igarashi, Takeo, Hoffmann, Tim

论文摘要

本文基于平均曲率和度量标准的形状表示3D表面的生成模型,该模型在刚性转换下是不变的。因此,与现有的3D机器学习框架相比,我们的模型大大减少了翻译和旋转的影响。另外,由于曲率在我们的模型中明确编码,形状的局部结构将更加精确地捕获。具体而言,首先将每个表面映射到规范域,例如单位磁盘或单位球体。然后,它由两个函数表示:平均曲率半密度和顶点密度,在此规范域上。假设输入形状遵循潜在空间中的一定分布,我们使用变分自动编码器来学习潜在空间表示。学习后,我们可以通过随机采样潜在空间中的分布来产生形状的变化。具有三角形网格的表面可以通过施加各向同性的重构和自旋变换来从生成的数据中重建,这是由Dirac方程式给出的。我们证明了模型对人造和生物形状数据集的有效性,并将结果与​​其他方法进行了比较。

This paper introduces a generative model for 3D surfaces based on a representation of shapes with mean curvature and metric, which are invariant under rigid transformation. Hence, compared with existing 3D machine learning frameworks, our model substantially reduces the influence of translation and rotation. In addition, the local structure of shapes will be more precisely captured, since the curvature is explicitly encoded in our model. Specifically, every surface is first conformally mapped to a canonical domain, such as a unit disk or a unit sphere. Then, it is represented by two functions: the mean curvature half-density and the vertex density, over this canonical domain. Assuming that input shapes follow a certain distribution in a latent space, we use the variational autoencoder to learn the latent space representation. After the learning, we can generate variations of shapes by randomly sampling the distribution in the latent space. Surfaces with triangular meshes can be reconstructed from the generated data by applying isotropic remeshing and spin transformation, which is given by Dirac equation. We demonstrate the effectiveness of our model on datasets of man-made and biological shapes and compare the results with other methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源