论文标题
具有自适应数据增强的物理一致的数据驱动波形反演
Physics-Consistent Data-driven Waveform Inversion with Adaptive Data Augmentation
论文作者
论文摘要
地震全波倒置(FWI)是一种非线性计算成像技术,可以提供地下地球物理特性的详细估计。解决FWI问题由于其不良性和高计算成本而可能具有挑战性。在这项工作中,我们开发了一种新的混合计算方法来求解FWI,该方法将基于物理的模型与数据驱动的方法结合在一起。特别是,我们制定了一个数据增强策略,该策略不仅可以提高训练集的代表性,而且还可以将重要的理性物理学纳入培训过程,从而提高反转精度。为了验证性能,我们将我们的方法应用于从加利福尼亚金贝利纳的碳固隔地点建立的地下地质模型产生的合成弹性地震波形数据。我们将物理矛盾的数据驱动的反转方法与纯粹基于物理和纯粹数据驱动的方法进行了比较,并观察到我们的方法具有更高的准确性和更大的泛化能力。
Seismic full-waveform inversion (FWI) is a nonlinear computational imaging technique that can provide detailed estimates of subsurface geophysical properties. Solving the FWI problem can be challenging due to its ill-posedness and high computational cost. In this work, we develop a new hybrid computational approach to solve FWI that combines physics-based models with data-driven methodologies. In particular, we develop a data augmentation strategy that can not only improve the representativity of the training set but also incorporate important governing physics into the training process and therefore improve the inversion accuracy. To validate the performance, we apply our method to synthetic elastic seismic waveform data generated from a subsurface geologic model built on a carbon sequestration site at Kimberlina, California. We compare our physics-consistent data-driven inversion method to both purely physics-based and purely data-driven approaches and observe that our method yields higher accuracy and greater generalization ability.