论文标题

可变形流形的计算分析:从几何建模到深度学习

Computational Analysis of Deformable Manifolds: from Geometric Modelling to Deep Learning

论文作者

Schonsheck, Stefan C

论文摘要

狮子座托尔斯泰(Leo Tolstoy)用现在的著名话语打开了他的纪念性小说安娜·卡雷尼娜(Anna Karenina):幸福的家庭都是一样的;每个不快乐的家庭都以自己的方式不高兴,类似的概念也适用于数学空间:每个平坦的空间都是一样的;每个开心的空间都以自己的方式开采。但是,我们将表明非平台空间的多样性提供了丰富的研究领域,而不是成为不幸的根源。所谓的大数据时代的起源以及增加规模的社会和科学数据库的扩散导致需要有效地处理,分析甚至产生高维数据的算法。但是,维数的诅咒导致了这样一个事实,即许多经典方法在这些问题的大小方面都无法很好地扩展。避免其中一些不良影响的一种技术是利用相干数据的几何结构。在本文中,我们将探讨用于形状处理和数据分析的几何方法。更具体地说,我们将研究通过多种数学工具(但不限于计算差异几何形状,变分PDE建模和深度学习)来代表它们支持的流形和信号的技术。首先,我们将通过变分建模探索非缘法形状匹配。接下来,我们将使用从流形的平行运输中的想法来概括卷积和卷积神经网络到可变形的流形。最后,我们通过提出了一种新型的自动回归模型来捕获数据的内在几何学和拓扑结构。在整个工作中,我们将使用计算对应关系的想法作为既激励我们的工作又分析结果的界线。

Leo Tolstoy opened his monumental novel Anna Karenina with the now famous words: Happy families are all alike; every unhappy family is unhappy in its own way A similar notion also applies to mathematical spaces: Every flat space is alike; every unflat space is unflat in its own way. However, rather than being a source of unhappiness, we will show that the diversity of non-flat spaces provides a rich area of study. The genesis of the so-called big data era and the proliferation of social and scientific databases of increasing size has led to a need for algorithms that can efficiently process, analyze and, even generate high dimensional data. However, the curse of dimensionality leads to the fact that many classical approaches do not scale well with respect to the size of these problems. One technique to avoid some of these ill-effects is to exploit the geometric structure of coherent data. In this thesis, we will explore geometric methods for shape processing and data analysis. More specifically, we will study techniques for representing manifolds and signals supported on them through a variety of mathematical tools including, but not limited to, computational differential geometry, variational PDE modeling, and deep learning. First, we will explore non-isometric shape matching through variational modeling. Next, we will use ideas from parallel transport on manifolds to generalize convolution and convolutional neural networks to deformable manifolds. Finally, we conclude by proposing a novel auto-regressive model for capturing the intrinsic geometry and topology of data. Throughout this work, we will use the idea of computing correspondences as a though-line to both motivate our work and analyze our results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源