论文标题
傅立叶变换和扩展地图
Fourier transform and expanding maps on Cantor sets
论文作者
论文摘要
我们研究了非原子吉布斯的傅立叶变换$ \wideHatμ(ξ)$,用于$ [0,1] $的均匀扩展的地图$ t $ t $ t $ t $ [0,1] $或具有强分离的cantor套件。当$ t $完全非线性时,然后以多项式速率为$ |widehatμ(ξ)\至0 $作为$ |ξ| \ to \ infty $。
We study the Fourier transforms $\widehatμ(ξ)$ of non-atomic Gibbs measures $μ$ for uniformly expanding maps $T$ of bounded distortions on $[0,1]$ or Cantor sets with strong separation. When $T$ is totally non-linear, then $\widehatμ(ξ) \to 0$ at a polynomial rate as $|ξ| \to \infty$.