论文标题
DRLE:在IOV中的交通信号灯控制边缘的分散增强学习
DRLE: Decentralized Reinforcement Learning at the Edge for Traffic Light Control in the IoV
论文作者
论文摘要
车辆互联网(IOV)可以在车辆和路边单元之间进行实时数据交换,因此提供了一种有希望的解决方案,以减轻城市地区的交通拥堵。同时,通过有效的交通灯控制进行更好的交通管理也可以通过实现更好的通信环境并减少网络负载来使IOV受益。因此,IOV和有效的交通灯控制可以制定一个良性周期。 Edge Computing是一种在网络边缘提供低延迟计算功能的新兴技术,可以进一步提高此周期的性能。但是,尽管收集到的信息很有价值,但有效利用和更快的反馈的有效解决方案尚未为Edge-Exporeed IOV开发。为此,我们在IOV(DRLE)中提出了一个分散的加固学习。 Drle利用了IOV的普遍存在,以加速交通数据的收集及其解释,以减轻拥塞并提供更好的交通灯控制。 DRLE在边缘服务器的覆盖范围内运行,并使用来自相邻边缘服务器的汇总数据来提供城市规模的交通灯控制。 Drle分解了大面积控制的高度复杂问题。进入分散的多代理问题。我们通过具体的数学推理证明了它的全球最佳选择。在每个边缘节点上运行的拟议的分散增强学习算法可实时适应交通信号灯。我们进行了广泛的评估,并证明了这种方法比几种最先进的算法的优越性。
The Internet of Vehicles (IoV) enables real-time data exchange among vehicles and roadside units and thus provides a promising solution to alleviate traffic jams in the urban area. Meanwhile, better traffic management via efficient traffic light control can benefit the IoV as well by enabling a better communication environment and decreasing the network load. As such, IoV and efficient traffic light control can formulate a virtuous cycle. Edge computing, an emerging technology to provide low-latency computation capabilities at the edge of the network, can further improve the performance of this cycle. However, while the collected information is valuable, an efficient solution for better utilization and faster feedback has yet to be developed for edge-empowered IoV. To this end, we propose a Decentralized Reinforcement Learning at the Edge for traffic light control in the IoV (DRLE). DRLE exploits the ubiquity of the IoV to accelerate the collection of traffic data and its interpretation towards alleviating congestion and providing better traffic light control. DRLE operates within the coverage of the edge servers and uses aggregated data from neighboring edge servers to provide city-scale traffic light control. DRLE decomposes the highly complex problem of large area control. into a decentralized multi-agent problem. We prove its global optima with concrete mathematical reasoning. The proposed decentralized reinforcement learning algorithm running at each edge node adapts the traffic lights in real time. We conduct extensive evaluations and demonstrate the superiority of this approach over several state-of-the-art algorithms.