论文标题

复杂表面上的共同体学室和椭圆纤维的calabi-yau三倍

Cohomology Chambers on Complex Surfaces and Elliptically Fibered Calabi-Yau Three-folds

论文作者

Brodie, Callum R., Constantin, Andrei

论文摘要

我们确定了几类平滑的复杂射斑表面,可以将Zariski分解与消失的定理结合在一起,以产生所有线束的共同体学公式。获得的公式在除数类的交叉点方面表达了共同体,并适合将有效锥体分解为Zariski Charbers。特别是,我们表明这发生在广义的del pezzo表面,感谢您的表面和K3表面。在第二部分中,我们使用这些表面结果来得出一类简单的椭圆纤维纤维卡拉比YAU的平方捆绑组合的公式。计算这种数量是在弦弦压缩中得出无质量频谱的关键步骤。

We determine several classes of smooth complex projective surfaces on which Zariski decomposition can be combined with vanishing theorems to yield cohomology formulae for all line bundles. The obtained formulae express cohomologies in terms of divisor class intersections, and are adapted to the decomposition of the effective cone into Zariski chambers. In particular, we show this occurs on generalised del Pezzo surfaces, toric surfaces, and K3 surfaces. In the second part we use these surface results to derive formulae for all line bundle cohomology on a simple class of elliptically fibered Calabi-Yau three-folds. Computing such quantities is a crucial step in deriving the massless spectrum in string compactifications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源