论文标题
使用QAOA在量子计算机上加权最大k-cut的有效编码
Efficient encoding of the weighted MAX k-CUT on a quantum computer using QAOA
论文作者
论文摘要
加权最大k-cut问题包括找到给定加权的无向图G(v,e)的k部分,使得交叉边缘的权重总和最大化。问题特别令人感兴趣,因为它具有多种实际应用。我们提出了适用于在嘈杂的中间尺度量子(NISQ)devices上运行量子近似优化算法(QAOA)的加权最大k-cut的公式。新公式使用仅需要| v | log_2(k)Qubits的二进制编码。本文的贡献如下:i)基于二进制编码为基础门的相位分离算子的新颖分解是针对k> 2的最大k-cut问题提供的。 ii)进行了一组测试案例的数值模拟,比较了不同的编码。 iii)介绍了不同编码的资源(量子数,cx门的数量)的分析。 iv)将配方和仿真扩展到加权图的情况。对于小k,当k不是两个功率时,我们的算法是在NISQ设备上显示量子优势的可能候选者。
The weighted MAX k-CUT problem consists of finding a k-partition of a given weighted undirected graph G(V,E) such that the sum of the weights of the crossing edges is maximized. The problem is of particular interest as it has a multitude of practical applications. We present a formulation of the weighted MAX k-CUT suitable for running the quantum approximate optimization algorithm (QAOA) on noisy intermediate scale quantum (NISQ)-devices to get approximate solutions. The new formulation uses a binary encoding that requires only |V|log_2(k) qubits. The contributions of this paper are as follows: i) A novel decomposition of the phase separation operator based on the binary encoding into basis gates is provided for the MAX k-CUT problem for k >2. ii) Numerical simulations on a suite of test cases comparing different encodings are performed. iii) An analysis of the resources (number of qubits, CX gates) of the different encodings is presented. iv) Formulations and simulations are extended to the case of weighted graphs. For small k and with further improvements when k is not a power of two, our algorithm is a possible candidate to show quantum advantage on NISQ devices.