论文标题
基于物理感知的结构约束的空间分类和有限的观察结果
Spatial Classification With Limited Observations Based On Physics-Aware Structural Constraint
论文作者
论文摘要
特征观察有限的空间分类在机器学习中是一个具有挑战性的问题。该问题存在于仅在某些位置部署了一部分传感器或部分响应的应用程序中。现有的研究主要集中于解决不完整或缺失的数据,例如数据清洁和插入,分类模型,这些模型允许缺少特征值或模型丢失的特征作为EM算法中的隐藏变量。但是,这些方法假设不完整的特征观察只发生在一小部分样品中,因此无法解决绝大多数样本缺失特征观察的问题。为了解决这个问题,我们最近提出了一种新方法,将物理感知的结构约束纳入模型表示。我们的方法假设在所有样本位置都观察到空间上下文特征,并从基本的空间上下文特征图中建立空间结构约束。我们为模型参数学习和类推断设计有效的算法。本文通过允许每个类中的样本的特征值遵循多模式分布来扩展我们的最新方法。我们建议针对具有多模式分布的扩展模型学习算法。对现实世界水文应用的评估表明,我们的方法在分类准确性中的基线方法显着优于基线方法,并且多模式扩展比我们早期的单模式版本更强大,尤其是当训练样品中的特征分布是多模式时。计算实验表明,所提出的解决方案在大型数据集上有效地计算有效。
Spatial classification with limited feature observations has been a challenging problem in machine learning. The problem exists in applications where only a subset of sensors are deployed at certain spots or partial responses are collected in field surveys. Existing research mostly focuses on addressing incomplete or missing data, e.g., data cleaning and imputation, classification models that allow for missing feature values or model missing features as hidden variables in the EM algorithm. These methods, however, assume that incomplete feature observations only happen on a small subset of samples, and thus cannot solve problems where the vast majority of samples have missing feature observations. To address this issue, we recently proposed a new approach that incorporates physics-aware structural constraint into the model representation. Our approach assumes that a spatial contextual feature is observed for all sample locations and establishes spatial structural constraint from the underlying spatial contextual feature map. We design efficient algorithms for model parameter learning and class inference. This paper extends our recent approach by allowing feature values of samples in each class to follow a multi-modal distribution. We propose learning algorithms for the extended model with multi-modal distribution. Evaluations on real-world hydrological applications show that our approach significantly outperforms baseline methods in classification accuracy, and the multi-modal extension is more robust than our early single-modal version especially when feature distribution in training samples is multi-modal. Computational experiments show that the proposed solution is computationally efficient on large datasets.