论文标题
dixmier-douady类,动作同态和组合群体上的共生组
The Dixmier-Douady class, the action homomorphism, and group cocycles on the symplectomorphism group
论文作者
论文摘要
令$ x $为单连接的整体符号歧管。在本文中,我们在$ x $的符号切除型组上构建和研究了两个循环和三环。特别是,通过使用这些共同体,我们阐明了温斯坦的作用同态和普遍的二型二极管平面符号振动之间的关系。
Let $X$ be a one-connected and integral symplectic manifold. In this paper, we construct and study a two-cocycle and three-cocycle on the symplectomorphism group of $X$. In particular, by using these cocycles, we clarify the relationship between Weinstein's action homomorphism and the universal Dixmier-Douady class of flat symplectic fibrations.