论文标题

二聚体旋转1链的SU(3)对称点周围的通用类

Universality Class around the SU(3) Symmetric Point of the Dimer-Trimer Spin-1 Chain

论文作者

Mashiko, Tohru, Moriya, Shunji, Nomura, Kiyohide

论文摘要

我们研究SU(3)添加SU(3)不对称项时SU(3)对称自旋1链的临界现象。为了研究这种系统,我们将围绕SU(3)对称点的二聚体二聚体(DT)模型对角度化,称为纯晶光(PT)点。我们通过保形场理论(CFT)分析了数值结果。首先,我们在pt点的波数q = 0和q =2π/3处发现软模式,然后系统至关重要。其次,我们发现PT点处的系统属于CFT,中央电荷C = 2和缩放维度X = 2/3。最后,通过研究pt点附近的哈密顿量的特征值,我们发现从巨大相位到无质量相的Pt点存在相变。从这些数值结果中,PT点处的相变属于Berezinskii-Kosterlitz-thouless-thouless(BKT)类似的普遍性类别,该类别由1级SU(3)su(3)wess-zumino-winter(su(su(3)1 WZW)。

We study critical phenomena of the SU(3) symmetric spin-1 chains when adding the SU(3) asymmetric term. To investigate such system, we numerically diagonalize the Dimer-Trimer (DT) model Hamiltonian around the SU(3) symmetric point, named the pure trimer (PT) point. We analyze our numerical results with the conformal field theory (CFT). First of all, we discover soft modes at the wave number q = 0 and q = 2π/3 for the PT point, and then the system is critical. Secondly, we find that the system at the PT point belongs to the CFT with the central charge c = 2 and the scaling dimension x = 2/3. Finally, by investigating the eigenvalues of the Hamiltonian in the vicinity of the PT point, we find that there is a phase transition at the PT point from a massive phase to a massless phase. From these numerical results, the phase transition at the PT point belongs to the Berezinskii-Kosterlitz-Thouless (BKT)-like universality class that is explained by the level-1 SU(3) Wess-Zumino-Witten (SU(3) 1 WZW) model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源