论文标题

通过稀疏的回归混合物,通过流式细胞仪与协变量测量的细胞群体建模

Modeling Cell Populations Measured By Flow Cytometry With Covariates Using Sparse Mixture of Regressions

论文作者

Hyun, Sangwon, Cape, Mattias Rolf, Ribalet, Francois, Bien, Jacob

论文摘要

海洋充满了称为浮游植物的微小微藻,它们共同负责与陆地上所有植物的光合作用。我们预测他们对变暖海洋的反应的能力取决于了解浮游植物种群的动态如何受环境条件变化的影响。研究浮游植物动力学的一种强大技术是流式细胞仪,它可以测量每秒成千上万个单个细胞的光学特性。如今,海洋学家能够实时收集流动细胞仪数据,从而为他们提供了精细的分辨率,以分配数千公里的浮游植物分布。当前的挑战之一是了解这些小规模和大型变化如何与环境条件(例如养分可用性,温度,光线和洋流)有关。在本文中,我们提出了多变量回归模型的新型稀疏混合物,以估计随着时间的变化浮游植物的亚群,同时识别预测观察到的这些亚群体变化的特定环境协变量。我们使用合成数据和在2017年春季在东北太平洋进行的海洋学巡游中收集的合成数据和实际观察结果证明了该方法的有用性和解释性。

The ocean is filled with microscopic microalgae called phytoplankton, which together are responsible for as much photosynthesis as all plants on land combined. Our ability to predict their response to the warming ocean relies on understanding how the dynamics of phytoplankton populations is influenced by changes in environmental conditions. One powerful technique to study the dynamics of phytoplankton is flow cytometry, which measures the optical properties of thousands of individual cells per second. Today, oceanographers are able to collect flow cytometry data in real-time onboard a moving ship, providing them with fine-scale resolution of the distribution of phytoplankton across thousands of kilometers. One of the current challenges is to understand how these small and large scale variations relate to environmental conditions, such as nutrient availability, temperature, light and ocean currents. In this paper, we propose a novel sparse mixture of multivariate regressions model to estimate the time-varying phytoplankton subpopulations while simultaneously identifying the specific environmental covariates that are predictive of the observed changes to these subpopulations. We demonstrate the usefulness and interpretability of the approach using both synthetic data and real observations collected on an oceanographic cruise conducted in the north-east Pacific in the spring of 2017.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源