论文标题

一般两波段模型的纵向和异常的霍尔电导率

Longitudinal and anomalous Hall conductivity of a general two-band model

论文作者

Mitscherling, Johannes

论文摘要

我们得出并分析了一般动量障碍物两波段模型的纵向和异常霍尔电导率。该模型捕获了各种物理上非常不同的系统,包括Néel抗磁磁性和螺旋旋转密度波,以及涉及自旋轨道相互作用并众所周知的模型。我们提出了有限温度和恒定散射速率$γ$的完整微观推导,该频率$γ$是对角线且相等的,但对于两个频段而言任意较大。我们确定两个标准,可以实现独特的电导率分解。一方面,我们区分了由所涉及的准粒子光谱函数定义的内标和间贡献。另一方面,我们区分了对称和反对称贡献,这些贡献是由在电流和电场方向交换下的对称性定义的。 (对称的)内部贡献概括了标准Boltzmann运输理论的公式,该公式仅在干净极限(小$γ$)中有效,而带之间的贡献捕获了超出独立准粒子以外的带间相干性效应。我们表明,对称间贡献仅对有限的$γ$进行了校正,并且由量子度量控制。反对称的边界间贡献从浆果曲率方面概括了异常霍尔电导率的公式,以有限的$γ$。我们分析研究清洁(小$γ$)和肮脏(大$γ$)的限制。给出了提出的推导与巴斯汀和Streda形式主义之间的联系。我们将结果应用于Chern绝缘子,铁磁多D-Orbital和螺旋旋转密度波模型。

We derive and analyze the longitudinal and the anomalous Hall conductivity for a general momentum-block-diagonal two-band model. This model captures a broad spectrum of physically very different systems including Néel antiferromagnetic and spiral spin density waves as well as models that involve spin-orbit interaction and are known to show topological properties. We present a complete microscopic derivation for finite temperature and constant scattering rate $Γ$ that is diagonal and equal, but arbitrarily large for both bands. We identify two criteria that allow for a unique and physically motivated decomposition of the conductivities. On the one hand, we distinguish intraband and interband contributions that are defined by the involved quasiparticle spectral functions. On the other hand, we distinguish symmetric and antisymmetric contributions that are defined by the symmetry under the exchange of the current and the electric field directions. The (symmetric) intraband contributions generalize the formula of standard Boltzmann transport theory, which is valid only in the clean limit (small $Γ$), whereas the interband contributions capture interband coherence effects beyond independent quasiparticles. We show that the symmetric interband contribution is a correction only present for finite $Γ$ and is controlled by the quantum metric. The antisymmetric interband contributions generalize the formula of the anomalous Hall conductivity in terms of the Berry curvature to finite $Γ$. We study the clean (small $Γ$) and dirty (large $Γ$) limit analytically. The connection between the presented derivation and the Bastin and Streda formalism is given. We apply our results to a Chern insulator, a ferromagnetic multi-d-orbital, and a spiral spin density wave model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源