论文标题

$(1+1)$ - QuasilIrinear Wave方程的尺寸系统的全球稳定性

Global stability of traveling waves for $(1+1)$-dimensional systems of quasilinear wave equations

论文作者

Cha, Louis Dongbing, Shao, Arick

论文摘要

$(1+1)$ - 尺寸非线性波方程的关键特征是,在适当的代数条件下,他们承认左或右行进波。在本文中,我们证明了对于$(1+1)$ - 非线性波方程的尺寸系统的全球稳定性,鉴于某些渐近无效的状态和足够的衰减,对于波动波。我们首先将半线性系统视为更简单的模型问题。然后,我们开始处理更通用的准线性系统。

A key feature of $(1+1)$-dimensional nonlinear wave equations is that they admit left or right traveling waves, under appropriate algebraic conditions on the nonlinearities. In this paper, we prove global stability of such traveling wave solutions for $(1+1)$-dimensional systems of nonlinear wave equations, given a certain asymptotic null condition and sufficient decay for the traveling wave. We first consider semilinear systems as a simpler model problem; we then proceed to treat more general quasilinear systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源