论文标题

在多项式序列和功能场上的二次贝特曼猜想上取消Möbius

Möbius cancellation on polynomial sequences and the quadratic Bateman-Horn conjecture over function fields

论文作者

Sawin, Will, Shusterman, Mark

论文摘要

我们以$ \ mathbb {f} _q [u] $低于Pólya-Vinogradov范围的$ \ mathbb {f} _q [u] $的简短款项建立取消,而储蓄接近Square-ot-q $ q $的增长。这用于解决$ \ Mathbb {f} _q [u] $ - 乔拉拉(Chowla)对多项式序列的取消的猜想的类似物,以多项式序列和bateman-horn的猜想为$ 2 $,以$ q $为$ q $。最终的应用程序是在$ \ mathbb {f} _q [u] $中使用Primes的跟踪功能的总和。

We establish cancellation in short sums of certain special trace functions over $\mathbb{F}_q[u]$ below the Pólya-Vinogradov range, with savings approaching square-root cancellation as $q$ grows. This is used to resolve the $\mathbb{F}_q[u]$-analog of Chowla's conjecture on cancellation in Möbius sums over polynomial sequences, and of the Bateman-Horn conjecture in degree $2$, for some values of $q$. A final application is to sums of trace functions over primes in $\mathbb{F}_q[u]$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源