论文标题
在Bogomolov-gieseker的不平等现象中
On the Bogomolov-Gieseker inequality in positive characteristic
论文作者
论文摘要
我们证明了Bogomolov-gieseker不平等的一种版本,在正类型的普通类型的光滑投射表面上,当矢量捆绑包的排名足够大时,它比Langer的结果强。我们的不平等使我们能够在积极特征的所有光滑投影表面上构建具有全面支撑属性的Bridgeland稳定性条件。
We prove a version of the Bogomolov-Gieseker inequality on smooth projective surfaces of general type in positive characteristic, which is stronger than the result by Langer when the ranks of vector bundles are sufficiently large. Our inequality enables us to construct Bridgeland stability conditions with full support property on all smooth projective surfaces in positive characteristic.