论文标题
极端恒星形成区域的紫外线光谱:证据表明非常巨大的恒星过多
Ultraviolet spectra of extreme nearby star-forming regions: evidence for an overabundance of very massive stars
论文作者
论文摘要
随着深度光谱运动扩展到更高的红移和较低的恒星群体,银河光谱的解释越来越多地取决于非常年轻的恒星种群的模型。在这里,我们提出了附近七个($ <120美元MPC)的新的HST/COS Ultaviolet光谱,并提供非常年轻的恒星种群($ \ sim $ 4-20 Myr),其中具有光学狼射线风格签名,这是一个理想的实验室,可以在其中测试这些出色的型号。我们在所有七个中都检测到了Nebular C III],但在同等宽度上均匀地<10 $Å。这表明,即使对于非常年轻的恒星种群,在$ \ geq 15 $Å处的最高等效宽度c iii]发射也可以保留在SMC或低于SMC下的金属效率低下的气体。该光谱还显示出强大的C IV p-Cygni曲线和在巨大恒星的风中形成的宽大II发射,其中包括在综合光谱中检测到的一些最突出的He II II恒星风线。我们发现,最新的恒星种群综合处方通过改进的大量恒星的处理几乎重现了此处观察到的整个恒星风格。但是,我们发现这些模型不能同时将最强的风特征与光学变形线约束匹配。这种差异可以自然地解释是由于二元传质的高发生率和在短$ \ lyssim 10 $ 10 $ myr时尺上发生的高质量发生的非常大的恒星,这表明这些过程对于理解早期宇宙中最高的SSFR星系可能至关重要。诸如此类的年轻系统的恒星和肾小管光都将是下一代恒星种群合成模型的关键基准。
As deep spectroscopic campaigns extend to higher redshifts and lower stellar masses, the interpretation of galaxy spectra depends increasingly upon models for very young stellar populations. Here we present new HST/COS ultraviolet spectroscopy of seven nearby ($<120$ Mpc) star-forming regions hosting very young stellar populations ($\sim$ 4-20 Myr) with optical Wolf-Rayet stellar wind signatures, ideal laboratories in which to test these stellar models. We detect nebular C III] in all seven, but at equivalent widths uniformly $< 10$ Å. This suggests that even for very young stellar populations, the highest equivalent width C III] emission at $\geq 15$ Å is reserved for inefficiently-cooled gas at metallicities at or below that of the SMC. The spectra also reveal strong C IV P-Cygni profiles and broad He II emission formed in the winds of massive stars, including some of the most prominent He II stellar wind lines ever detected in integrated spectra. We find that the latest stellar population synthesis prescriptions with improved treatment of massive stars nearly reproduce the entire range of stellar He II wind strengths observed here. However, we find that these models cannot simultaneously match the strongest wind features alongside the optical nebular line constraints. This discrepancy can be naturally explained by an overabundance of very massive stars produced by a high incidence of binary mass transfer and mergers occurring on short $\lesssim 10$ Myr timescales, suggesting these processes may be crucial for understanding the highest-sSFR galaxies in the early Universe. Reproducing both the stellar and nebular light of young systems such as these will be a crucial benchmark for the next generation of stellar population synthesis models.