论文标题
具有三体相互作用的可调量子自旋链
Tunable quantum spin chain with three-body interactions
论文作者
论文摘要
我们介绍了弗雷德金自旋链的概括,该链条具有可调的三体相互作用,该相互作用以传统的旋转式算子表示。在模型的两个自由参数中,一个控制了对抗铁磁性的偏好,而另一个控制量子波动的强度。在此公式中,所谓的$ t $ formed型模型(一种完全可解决的,无沮丧的汉密尔顿人)生活在一个以相图起源为中心的单位圆圈上。该圆圈划定了内部和各种抗铁磁磁相之间的铁磁性之间的边界。在相图的大多数非铁磁性部分中,基态具有戴克词形式:即,所有贡献的旋转构型都表现出完美的匹配和嵌套的旋转和旋转。例外是两个区域,其中Dyck单词不匹配在能量上有利。我们指出,在这些区域,能量水平的间距在系统尺寸上可能呈指数级。正是由于链端较小时,精确的对角化揭示了高度特质的能量谱,这大概是因为链端的硬旋转扭曲会引起强大的不可约合性对散装系统的影响。作为收敛检查,我们将DMRG结果基准为几乎双重精确的浮点精度,以确切可溶解点的分析结果,并在整个参数空间中针对小型系统大小的精确对角线化结果。
We introduce a generalization of the Fredkin spin chain with tunable three-body interactions expressed in terms of conventional spin-half operators. Of the model's two free parameters, one controls the preference for Ising antiferromagnetism and the other controls the strength of quantum fluctuations. In this formulation, the so-called $t$-deformed model (an exactly solvable, frustration-free Hamiltonian) lives on a unit circle centered on the origin of the phase diagram. The circle demarcates the boundary between ferromagnetic order inside and various antiferromagnetic phases outside. Throughout most of the non-ferromagnetic parts of the phase diagram, the ground state has Dyck word form: i.e., all contributing spin configurations exhibit perfect matching and nesting of spin up and spin down. The exceptions are two regions in which Dyck word mismatches are energetically favorable. We remark that in those regions the energy level spacing can be exponentially small in the system size. It is also the case that exact diagonalization reveals a highly idiosyncratic energy spectrum, presumably because the hard spin twist at the chain ends induces strong incommensurability effects on the bulk system when the chain length is small. As a convergence check, we benchmark our DMRG results to near-double-precision floating-point accuracy against analytical results at exactly solvable points and against exact diagonalization results for small system sizes across the entire parameter space.