论文标题
原子中的精确核旋转效应:减少理论误差的EFT方法
Precision Nuclear-Spin Effects in Atoms: EFT Methods for Reducing Theory Errors
论文作者
论文摘要
我们使用有效的现场理论来计算核结构对原子能水平的精确计算的影响。与往常一样,EFT的有效耦合对应于各种核特性(例如电荷半径,核极化,friar和Zemach Momments {\ it等}),这些核能{\ it等})主导了其低能的电磁对周围环境的影响。通过扩展到旋转原子核,在{\ tt arxiv:1708.09768}中为无旋转的论点提出的论点,我们使用EFT显示 - 以$zα$($ z $为$ z $的固定顺序)(其中$ z $是原子数,而$α$ $α$ the filed the-nout of the核能的比例 - 核能的比例很少。耦合天真地建议。我们的结果是使用位置空间方法得出的,将有效参数与EFT中的核性质匹配,从而更有效地利用了原子系统中小核极限的简单性。通过证明原子光谱的精确计算取决于比预期的核不确定性少,该观察结果允许构建许多非核与原子能量差异的组合组合的组合,它们的测量可以用于测量基本物理学(例如QED的预测),因为它们的理论不切实际受到核计算的精确限制。我们提供了几个简单的示例,说明了这种无核预测的类似氢原子的预测。
We use effective field theory to compute the influence of nuclear structure on precision calculations of atomic energy levels. As usual, the EFT's effective couplings correspond to the various nuclear properties (such as the charge radius, nuclear polarizabilities, Friar and Zemach moments {\it etc.}) that dominate its low-energy electromagnetic influence on its surroundings. By extending to spinning nuclei the arguments developed for spinless ones in {\tt arXiv:1708.09768}, we use the EFT to show -- to any fixed order in $Zα$ (where $Z$ is the atomic number and $α$ the fine-structure constant) and the ratio of nuclear to atomic size -- that nuclear properties actually contribute to electronic energies through fewer parameters than the number of these effective nuclear couplings naively suggests. Our result is derived using a position-space method for matching effective parameters to nuclear properties in the EFT, that more efficiently exploits the simplicity of the small-nucleus limit in atomic systems. By showing that precision calculations of atomic spectra depend on fewer nuclear uncertainties than naively expected, this observation allows the construction of many nucleus-independent combinations of atomic energy differences whose measurement can be used to test fundamental physics (such as the predictions of QED) because their theoretical uncertainties are not limited by the accuracy of nuclear calculations. We provide several simple examples of such nucleus-free predictions for Hydrogen-like atoms.