论文标题

使用CutFem的伯诺利自由边界问题比较形状衍生物

Comparison of Shape Derivatives using CutFEM for Ill-posed Bernoulli Free Boundary Problem

论文作者

Burman, Erik, He, Cuiyu, Larson, Mats G.

论文摘要

在本文中,我们讨论了用于识别计算域中未知边界的水平集方法。该问题采用了Bernoulli问题的形式,其中仅在边界上知道dirichlet基准,但有关诺伊曼条件的其他信息在边界的已知部分中可用。该方法使用经典的约束优化问题,其中成本功能相对于未知边界的位置最小化,其位置是由级别集合函数隐式定义的。为了解决优化问题,使用形状衍生物的最陡峭下降算法。在每次迭代中,剪切有限元方法用于获得给定级别设置配置的PDE模型约束的高精度近似,而无需重新介绍。我们考虑三种不同的形状衍生物。首先,使用连续优化问题得出的经典元素(优化然后离散化)。然后,首先使用CutFem方法离散功能,并在有限元函数上评估形状导数(离散化然后优化)。最后,我们考虑了第三种方法,也使用离散的功能。在这种情况下,我们不会扰动域,而是考虑一种所谓的边界值校正方法,其中对边界位置的较小校正可能包括在弱边界条件中。使用此校正,可以通过在离散的变化公式中扰动距离参数来获得形状衍生物。理论讨论通过一系列数值示例进行了说明,表明所有三种方法都会在拟议的伯努利问题上产生相似的结果。

In this paper we discuss a level set approach for the identification of an unknown boundary in a computational domain. The problem takes the form of a Bernoulli problem where only the Dirichlet datum is known on the boundary that is to be identified, but additional information on the Neumann condition is available on the known part of the boundary. The approach uses a classical constrained optimization problem, where a cost functional is minimized with respect to the unknown boundary, the position of which is defined implicitly by a level set function. To solve the optimization problem a steepest descent algorithm using shape derivatives is applied. In each iteration the cut finite element method is used to obtain high accuracy approximations of the pde-model constraint for a given level set configuration without re-meshing. We consider three different shape derivatives. First the classical one, derived using the continuous optimization problem (optimize then discretize). Then the functional is first discretized using the CutFEM method and the shape derivative is evaluated on the finite element functional (discretize then optimize). Finally we consider a third approach, also using a discretized functional. In this case we do not perturb the domain, but consider a so-called boundary value correction method, where a small correction to the boundary position may be included in the weak boundary condition. Using this correction the shape derivative may be obtained by perturbing a distance parameter in the discrete variational formulation. The theoretical discussion is illustrated with a series of numerical examples showing that all three approaches produce similar result on the proposed Bernoulli problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源