论文标题

带有自行车轨迹的城市自行车道规划:模型,算法和现实世界中的案例研究

Urban Bike Lane Planning with Bike Trajectories: Models, Algorithms, and a Real-World Case Study

论文作者

Liu, Sheng, Shen, Zuo-Jun Max, Ji, Xiang

论文摘要

我们研究了一个基于细粒自行车轨迹数据的城市自行车道计划问题,该数据由智能城市基础设施(例如自行车共享系统)提供。关键决定是在现有的道路网络中在哪里构建自行车道。随着自行车共享系统在世界各地的大都市地区变得广泛,许多市政府计划和建造自行车道,以促进骑自行车和保护骑自行车的人。传统的自行车道计划方法通常依赖于调查和启发式方法。我们开发了一个通用和新颖的优化框架,以指导自行车轨迹的自行车道计划。鉴于骑自行车的效用功能,我们将自行车道计划问题正式化,并得出了一个整数优化模型,以最大程度地提高实用程序。为了捕获骑自行车的路线选择,我们基于多项式logit模型开发了一个二重性程序。我们得出了有关基本模型的结构特性,并证明了自行车道计划模型的拉格朗日双重偶性是多项式时间可溶剂的。此外,我们使用线性近似方案将基于路线选择的计划模型重新制定为混合整数线性程序。我们开发可解决的配方和有效算法来解决大规模优化问题。通过与市政府进行的实际案例研究,我们证明了拟议算法的效率,并量化了自行车旅行的覆盖范围与自行车道的连续性之间的权衡。我们展示了网络拓扑如何根据实用程序功能演变,并强调了了解骑自行车者的路线选择的重要性。拟议的框架推动了智能城市运营管理中以数据为驱动的城市规划计划。

We study an urban bike lane planning problem based on the fine-grained bike trajectory data, which is made available by smart city infrastructure such as bike-sharing systems. The key decision is where to build bike lanes in the existing road network. As bike-sharing systems become widespread in the metropolitan areas over the world, bike lanes are being planned and constructed by many municipal governments to promote cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys and heuristics. We develop a general and novel optimization framework to guide the bike lane planning from bike trajectories. We formalize the bike lane planning problem in view of the cyclists' utility functions and derive an integer optimization model to maximize the utility. To capture cyclists' route choices, we develop a bilevel program based on the Multinomial Logit model. We derive structural properties about the base model and prove that the Lagrangian dual of the bike lane planning model is polynomial-time solvable. Furthermore, we reformulate the route choice based planning model as a mixed integer linear program using a linear approximation scheme. We develop tractable formulations and efficient algorithms to solve the large-scale optimization problem. Via a real-world case study with a city government, we demonstrate the efficiency of the proposed algorithms and quantify the trade-off between the coverage of bike trips and continuity of bike lanes. We show how the network topology evolves according to the utility functions and highlight the importance of understanding cyclists' route choices. The proposed framework drives the data-driven urban planning scheme in smart city operations management.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源