论文标题
找到最强的稳定失重柱,并具有自动负载和可重新定位的浓缩质量
Finding the strongest stable weightless column with a follower load and relocatable concentrated masses
论文作者
论文摘要
我们考虑沿着无质量弹性柱最佳放置浓缩质量的问题,该弹性柱在一端夹紧并由自由端的非保守自助力力量加载。目的是找到最大的可能间隔,以便在此间隔内加载参数的变化可保留结构的稳定性。稳定性约束是非凸和非平滑的,这使优化问题变得非常具有挑战性。我们对两个质量的情况进行了详细的分析处理,认为最佳参数构型同时接近稳定区域的颤动和分歧边界。此外,我们猜想该属性适用于任何数量的质量,这反过来又暗示了$ n $ asses的最大负载间隔的简单公式。该猜想得到了广泛的计算结果的强烈支持,该结果使用最近开发的开源软件包Granso(用于非平滑优化的梯度算法)获得,以最大程度地提高负载间隔,以适当地表达非鞋稳定性约束。我们希望我们的工作将为对民用和机械工程中出现的非保守弹性系统的稳定性优化的经典长期存在的新方法提供基础。
We consider the problem of optimal placement of concentrated masses along a massless elastic column that is clamped at one end and loaded by a nonconservative follower force at the free end. The goal is to find the largest possible interval such that the variation in the loading parameter within this interval preserves stability of the structure. The stability constraint is nonconvex and nonsmooth, making the optimization problem quite challenging. We give a detailed analytical treatment for the case of two masses, arguing that the optimal parameter configuration approaches the flutter and divergence boundaries of the stability region simultaneously. Furthermore, we conjecture that this property holds for any number of masses, which in turn suggests a simple formula for the maximal load interval for $n$ masses. This conjecture is strongly supported by extensive computational results, obtained using the recently developed open-source software package GRANSO (GRadient-based Algorithm for Non-Smooth Optimization) to maximize the load interval subject to an appropriate formulation of the nonsmooth stability constraint. We hope that our work will provide a foundation for new approaches to classical long-standing problems of stability optimization for nonconservative elastic systems arising in civil and mechanical engineering.