论文标题

学习定量交易的低频时间模式

Learning low-frequency temporal patterns for quantitative trading

论文作者

da Costa, Joel, Gebbie, Tim

论文摘要

我们考虑模块化的在线机器学习框架的可行性,以在低频财务时间序列数据中学习信号。该框架已在JSE股票市场的每日抽样截止时间序列数据上证明。输入模式是每日,每周,每月或季度采样特征更改的预处理序列的向量。数据处理被分为批处理处理的步骤,在该步骤中,使用无监督的学习使用堆叠的自动编码器来学习功能,然后使用这些学习的功能进行批处理和在线监督学习,而输出是测量时间序列特征特征功能波动的点。重量初始化是通过限制性的Boltzmann机器预训练和基于方差的初始化来实现的。然后,使用批处理培训和验证步骤的权重的在线馈电神经网络进行历史模拟。在使用合并对称的交叉验证以及概率和放气的Sharpe比率的对重测量的严格评估中,考虑了结果的有效性。结果用于制定有关金融市场现象学的观点,以及在特征金融市场的不稳定自适应动态下进行交易的复杂历史数据分析的价值。

We consider the viability of a modularised mechanistic online machine learning framework to learn signals in low-frequency financial time series data. The framework is proved on daily sampled closing time-series data from JSE equity markets. The input patterns are vectors of pre-processed sequences of daily, weekly and monthly or quarterly sampled feature changes. The data processing is split into a batch processed step where features are learnt using a stacked autoencoder via unsupervised learning, and then both batch and online supervised learning are carried out using these learnt features, with the output being a point prediction of measured time-series feature fluctuations. Weight initializations are implemented with restricted Boltzmann machine pre-training, and variance based initializations. Historical simulations are then run using an online feedforward neural network initialised with the weights from the batch training and validation step. The validity of results are considered under a rigorous assessment of backtest overfitting using both combinatorially symmetrical cross validation and probabilistic and deflated Sharpe ratios. Results are used to develop a view on the phenomenology of financial markets and the value of complex historical data-analysis for trading under the unstable adaptive dynamics that characterise financial markets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源