论文标题

半导体微腔中极地电子相互作用的理论

Theory of polariton-electron interactions in semiconductor microcavities

论文作者

Li, Guangyao, Bleu, Olivier, Levinsen, Jesper, Parish, Meera M.

论文摘要

我们开发了嵌入在微腔中的电子掺杂的二维半导体的微观描述。具体而言,我们研究了激烈的孔子相互作用在强烈筛选并且系统旋转极化的情况下,研究了激子 - 果龙与电子之间的相互作用。作为起点,我们获得了激子 - 果龙波函数的分析表达,并将光 - 强度系统的显微镜参数与实验可测量的数量(例如Rabi耦合和空腔光子频率)联系起来。然后,我们在标准诞生近似中得出了极化 - 电子的相互作用,并将其与我们从核物理学和超电原子气体的示意方法中获得的确切的极性电子散射$ t $矩阵进行了比较。特别是,我们表明,天生的近似在消失的动量时提供了极性电子耦合强度的上限。使用我们的精确微观计算,我们证明了与激子 - 电子情况相比,极性电子散射可以得到很大的增强,这与诞生的近似相反。此外,我们在北极拐点附近的散射矩处暴露了一个类似共振的峰,该弯曲点的尺寸是由轻度耦合的强度设置的。我们的结果来自极化系统的非高级性质,因此应适用于一系列半导体微腔(例如GAAS量子井和原子较薄的材料)。

We develop a microscopic description of an electron-doped two-dimensional semiconductor embedded in a microcavity. Specifically, we investigate the interactions between exciton-polaritons and electrons for the case where the interactions between charges are strongly screened and the system is spin polarized. As a starting point, we obtain an analytic expression for the exciton-polariton wave function, and we relate the microscopic parameters of the light-matter system to experimentally measurable quantities, such as the Rabi coupling and the cavity photon frequency. We then derive the polariton-electron interaction within the standard Born approximation and compare it with the exact polariton-electron scattering $T$ matrix that we obtain from a diagrammatic approach that has proven highly successful in the context of nuclear physics and ultracold atomic gases. In particular, we show that the Born approximation provides an upper bound on the polariton-electron coupling strength at vanishing momentum. Using our exact microscopic calculation, we demonstrate that polariton-electron scattering can be strongly enhanced compared to the exciton-electron case, which is the opposite of that expected from the Born approximation. We furthermore expose a resonance-like peak at scattering momenta near the polariton inflection point, whose size is set by the strength of the light-matter coupling. Our results arise from the non-Galilean nature of the polariton system and should thus be applicable to a range of semiconductor microcavities such as GaAs quantum wells and atomically thin materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源