论文标题

F理论中的魔术广场和半hypermultiplets

Magic square and half-hypermultiplets in F-theory

论文作者

Kuramochi, Rinto, Mizoguchi, Shun'ya, Tani, Taro

论文摘要

在六维的F理论/异源弦理论中,只有当它们对应于特定的QuaternionicKähler对称空间时,就会出现半hypermultiplet,这主要与Freudenthal-timits Magic Square相关。由以前在此类F理论模型中发现的有趣的奇异性结构的动机,该量规组$ su(6)$,$(12)$或$ e_7 $,作为最终的神奇示例,我们调查了椭圆形纤维化的F理论,上面是非split $ i_6 $类型的hirzebruch表面上的fliptial纤维,该类型是$ symmetery的$ symemmetery $ $ symemmetery $ $ $(3)我们发现与魔术正方形相关的先前F理论模型与本案例之间的质量差异很大。我们认为,相关的半hypermultiplet以$ e_6 $点出现,其中$ su(6)$的半hypermultiplets $ {\ bf 20} $将出现在拆分型号中。我们还考虑了$ D_6 $点附近的非本地物质生成的问题。在说出问题是什么之后,我们通过使用最近的结果来解释为什么这是如此,以至于可以将分裂/非切换过渡视为对照过渡。

In six-dimensional F-theory/heterotic string theory, half-hypermultiplets arise only when they correspond to particular quaternionic Kähler symmetric spaces, which are mostly associated with the Freudenthal-Tits magic square. Motivated by the intriguing singularity structure previously found in such F-theory models with a gauge group $SU(6)$,$SO(12)$ or $E_7$, we investigate, as the final magical example, an F-theory on an elliptic fibration over a Hirzebruch surface of the non-split $I_6$ type, in which the unbroken gauge symmetry is supposed to be $Sp(3)$. We find significant qualitative differences between the previous F-theory models associated with the magic square and the present case. We argue that the relevant half-hypermultiplets arise at the $E_6$ points, where half-hypermultiplets ${\bf 20}$ of $SU(6)$ would have appeared in the split model. We also consider the problem on the non-local matter generation near the $D_6$ point. After stating what the problem is, we explain why this is so by using the recent result that a split/non-split transition can be regarded as a conifold transition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源