论文标题
n-coherent戒指理论
K-theory of n-coherent rings
论文作者
论文摘要
让$ r $成为一个强大的$ n $ coherent环,使每个有限$ n $ r $ r $ thopule具有有限的投影尺寸。我们考虑$ \ MATHCAL {FP} _ {n}(r)$ $ r $ - 有限$ n $的完整子类别。我们证明$ \ Mathcal {fp} _ {n}(r)$是一个确切的类别,$ k_ {i}(r)= k_ {i}(\ Mathcal {fp} _ {n} _ {n}(n}(r))$ n $ i \ geq 0 $,并获得$ i \ operAtAt的$ ________________________
Let $R$ be a strong $n$-coherent ring such that each finitely $n$-presented $R$-module has finite projective dimension. We consider $\mathcal{FP}_{n}(R)$ the full subcategory of $R$-Mod of finitely $n$-presented modules. We prove that $\mathcal{FP}_{n}(R)$ is an exact category, $K_{i}(R) = K_{i}(\mathcal{FP}_{n}(R))$ for every $i\geq 0$ and obtain an expression of $\operatorname{Nil}_{i}(R)$.