论文标题
awnet:图像ISP的细心小波网络
AWNet: Attentive Wavelet Network for Image ISP
论文作者
论文摘要
随着在过去十年中智能手机的性能进行革命性的改进,移动摄影成为大多数智能手机用户中最常见的做法之一。但是,由于手机上的摄像头传感器的尺寸有限,因此在视觉上与数字单镜头反射(DSLR)相机拍摄的图像仍然不同。为了缩小此性能差距,一个是重新设计相机图像信号处理器(ISP)以提高图像质量。由于深度学习的迅速崛起,最近的工作诉诸深度卷积神经网络(CNN),以开发出复杂的数据驱动的ISP,该ISP将电话捕获的图像直接映射到了受数码单反相机的图像。在本文中,我们介绍了一个新颖的网络,该网络利用注意力机制和小波变换(称为awnet)来解决这个可学习的图像ISP问题。通过添加小波变换,我们提出的方法使我们能够从原始信息中恢复有利的图像细节,并获得更大的接收场,同时在计算成本方面保持较高的效率。在我们的方法中采用了全球上下文块,用于学习具有吸引力的RGB图像的非本地色映射。更重要的是,该块减轻了所提供的数据集对图像错位的影响。实验结果表明我们在定性和定量测量方面的设计进步。该代码可公开可用。
As the revolutionary improvement being made on the performance of smartphones over the last decade, mobile photography becomes one of the most common practices among the majority of smartphone users. However, due to the limited size of camera sensors on phone, the photographed image is still visually distinct to the one taken by the digital single-lens reflex (DSLR) camera. To narrow this performance gap, one is to redesign the camera image signal processor (ISP) to improve the image quality. Owing to the rapid rise of deep learning, recent works resort to the deep convolutional neural network (CNN) to develop a sophisticated data-driven ISP that directly maps the phone-captured image to the DSLR-captured one. In this paper, we introduce a novel network that utilizes the attention mechanism and wavelet transform, dubbed AWNet, to tackle this learnable image ISP problem. By adding the wavelet transform, our proposed method enables us to restore favorable image details from RAW information and achieve a larger receptive field while remaining high efficiency in terms of computational cost. The global context block is adopted in our method to learn the non-local color mapping for the generation of appealing RGB images. More importantly, this block alleviates the influence of image misalignment occurred on the provided dataset. Experimental results indicate the advances of our design in both qualitative and quantitative measurements. The code is available publically.