论文标题

研究图形IPU在粒子物理中应用的潜力

Studying the potential of Graphcore IPUs for applications in Particle Physics

论文作者

Mohan, Lakshan Ram Madhan, Marshall, Alexander, Maddrell-Mander, Samuel, O'Hanlon, Daniel, Petridis, Konstantinos, Rademacker, Jonas, Rege, Victoria, Titterton, Alexander

论文摘要

本文介绍了GraphCore智能处理单元(IPU)在粒子物理应用的背景下进行的首次研究。 IPU是一种针对机器学习优化的新型处理器。对基于神经网络的事件模拟,多种散发校正以及在IPU,GPU和CPU上实现的风味标记进行了比较,并使用各种神经网络体系结构和超参数进行了比较。此外,在IPU和GPU上实现了用于轨道重建的Kálmán滤波器。结果表明,IPU在满足粒子物理中迅速增加的计算需求方面具有巨大的希望。

This paper presents the first study of Graphcore's Intelligence Processing Unit (IPU) in the context of particle physics applications. The IPU is a new type of processor optimised for machine learning. Comparisons are made for neural-network-based event simulation, multiple-scattering correction, and flavour tagging, implemented on IPUs, GPUs and CPUs, using a variety of neural network architectures and hyperparameters. Additionally, a Kálmán filter for track reconstruction is implemented on IPUs and GPUs. The results indicate that IPUs hold considerable promise in addressing the rapidly increasing compute needs in particle physics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源