论文标题
Minkowski时空的因果未来预测
Causal Future Prediction in a Minkowski Space-Time
论文作者
论文摘要
估计未来事件是一项艰巨的任务。与人类不同,机器学习方法不是通过对物理学的自然理解来正规的。在野外,事件的合理继任受因果关系规则的约束,因果关系不能轻易地源自有限的培训集。在本文中,我们提出了一个新型的理论框架,以通过嵌入Minkowski时空的时空信息来执行因果未来的预测。我们利用从特殊相对论的光锥的概念来限制和穿越任意模型的潜在空间。我们在图像数据集中证明了因果图像合成和未来视频框架预测的成功应用程序。我们的框架是架构和任务无关的,并具有因果能力的强大理论保证。
Estimating future events is a difficult task. Unlike humans, machine learning approaches are not regularized by a natural understanding of physics. In the wild, a plausible succession of events is governed by the rules of causality, which cannot easily be derived from a finite training set. In this paper we propose a novel theoretical framework to perform causal future prediction by embedding spatiotemporal information on a Minkowski space-time. We utilize the concept of a light cone from special relativity to restrict and traverse the latent space of an arbitrary model. We demonstrate successful applications in causal image synthesis and future video frame prediction on a dataset of images. Our framework is architecture- and task-independent and comes with strong theoretical guarantees of causal capabilities.