论文标题

在两个具有系统尺寸的波动界面之间的接触距离的弱缩放

On the weak scaling of the contact distance between two fluctuating interfaces with system size

论文作者

Moritz, Clemens, Sega, Marcello, Innerbichler, Max, Geissler, Phillip L., Dellago, Christoph

论文摘要

一对平行的平行表面,每个表面沿它们的分离方向自由扩散,最终将接触。如果这些表面的形状也波动,那么当它们的质量中心保持非零距离$ \ ell $时,接触将发生。在这里,我们在第一次接触时检查了$ \ ell $的统计信息,该表面是根据Edwards-Wilkinson方程及时进化的。我们提出了一种计算其概率分布的一般方法,并确定其最可能的价值$ \ ell^*$如何取决于表面的横向尺寸$ l $。我们的动机是在热力学共存条件下对两个阶段之间的接口运动的兴趣,尤其是在周期性边界条件下的域壁对的an灭。对此方案的计算机模拟在两个维度和三个维度上验证了预测的缩放行为。在后一种情况下,$ \ ell^\ ast $的缓慢增长是$ \ log l $的代数函数,这意味着平板形域在拓扑上保持完整,直到$ \ ell $变得很小,从平衡热力学产生了矛盾的期望。

A pair of flat parallel surfaces, each freely diffusing along the direction of their separation, will eventually come into contact. If the shapes of these surfaces also fluctuate, then contact will occur when their centers of mass remain separated by a nonzero distance $\ell$. Here we examine the statistics of $\ell$ at the time of first contact for surfaces that evolve in time according to the Edwards-Wilkinson equation. We present a general approach to calculate its probability distribution and determine how its most likely value $\ell^*$ depends on the surfaces' lateral size $L$. We are motivated by an interest in the motion of interfaces between two phases at conditions of thermodynamic coexistence, and in particular the annihilation of domain wall pairs under periodic boundary conditions. Computer simulations of this scenario verify the predicted scaling behavior in two and three dimensions. In the latter case, slow growth where $\ell^\ast$ is an algebraic function of $\log L$ implies that slab-shaped domains remain topologically intact until $\ell$ becomes very small, contradicting expectations from equilibrium thermodynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源