论文标题
麦克斯韦平行成像
Maxwell Parallel Imaging
论文作者
论文摘要
目的:使用麦克斯韦正则化来开发并行成像(PI)的一般框架,以估计灵敏度图(SMS)的估计,并对无参数图像重建进行了约束优化。 理论和方法:SMS和图像的某些特征通常用于从高度加速的PI数据中正规化原本不良优化的关节重建。在本文中,我们依靠SMS的基本属性 - 它们是Maxwell方程的解决方案 - 我们构建了给定视野中支持的所有可能的SM分布的子空间,并促进了属于该子空间中的SMS的解决方案。此外,一旦获得了SMS的准确估计,我们将为图像重建的受约束优化方案作为第二步。所得的方法称为Maxwell并行成像(MPI),可与任何轨迹和最小校准信号无缝地适用于任意序列(2D和3D)。 结果:针对各种具有各种不足采样方案的数据集(包括径向,可变密度的泊松式碟和笛卡尔)的数据集说明了MPI的有效性,并与最先进的PI方法进行了比较。最后,我们包括一些数值实验,这些实验证明了借助张量分解的构建麦克斯韦基础的内存足迹缩短,从而允许将MPI用于完整的3D图像重建。 结论:MPI框架为通过任意加速扫描进行准确有效的图像重构提供了一种物理启发的优化方法。
Purpose: To develop a general framework for Parallel Imaging (PI) with the use of Maxwell regularization for the estimation of the sensitivity maps (SMs) and constrained optimization for the parameter-free image reconstruction. Theory and Methods: Certain characteristics of both the SMs and the images are routinely used to regularize the otherwise ill-posed optimization-based joint reconstruction from highly accelerated PI data. In this paper we rely on a fundamental property of SMs--they are solutions of Maxwell equations-- we construct the subspace of all possible SM distributions supported in a given field-of-view, and we promote solutions of SMs that belong in this subspace. In addition, we propose a constrained optimization scheme for the image reconstruction, as a second step, once an accurate estimation of the SMs is available. The resulting method, dubbed Maxwell Parallel Imaging (MPI), works seamlessly for arbitrary sequences (both 2D and 3D) with any trajectory and minimal calibration signals. Results: The effectiveness of MPI is illustrated for a wide range of datasets with various undersampling schemes, including radial, variable-density Poisson-disc, and Cartesian, and is compared against the state-of-the-art PI methods. Finally, we include some numerical experiments that demonstrate the memory footprint reduction of the constructed Maxwell basis with the help of tensor decomposition, thus allowing the use of MPI for full 3D image reconstructions. Conclusions: The MPI framework provides a physics-inspired optimization method for the accurate and efficient image reconstruction from arbitrary accelerated scans.