论文标题

通过卷积神经网络通过音频分类来检测埃及埃及蚊子

Detecting Aedes Aegypti Mosquitoes through Audio Classification with Convolutional Neural Networks

论文作者

Fernandes, Marcelo Schreiber, Cordeiro, Weverton, Recamonde-Mendoza, Mariana

论文摘要

在欠发达地区,蚊子传播疾病的发生率很大,这主要是由于缺乏针对蚊子增殖的积极控制测量的资源。提高社区对蚊子扩散意识的潜在策略是使用智能手机应用程序和众包制造蚊子事件的实时地图。在本文中,我们探讨了使用机器学习技术和从市售智能手机中捕获的机器学习技术和音频分析来识别埃及埃及蚊子的可能性。总而言之,我们对埃及伊格普蒂·翅曲的录音进行了沉重采样,并用它们通过监督学习来训练卷积神经网络(CNN)。作为特征,我们使用记录谱图以视觉时间来表示蚊子翼频频率。我们培训并比较了三个分类器:二进制,多类和二进制分类器的合奏。在我们的评估中,二进制和集合模型的准确性分别为97.65%($ \ pm $ 0.55)和94.56%($ \ pm $ 0.77),而多类的准确性为78.12%($ \ $ \ pm $ 2.09)。在合奏方法(96.82%$ \ pm $ 1.62)中观察到了最佳敏感性,其次是多类的特定案例(90.23%$ \ pm $ 3.83)和二进制(88.49%$ $ $ $ \ pm $ 6.68)。二进制分类器和多类分类器在精度和召回率之间取得了最佳平衡,F1测量接近90%。尽管合奏分类器的精度达到了最低的精度,因此损害了其F1量化(79.95%$ \ pm $ 2.13),但它是在我们数据集中检测Aedes Aegypti的最强大分类器。

The incidence of mosquito-borne diseases is significant in under-developed regions, mostly due to the lack of resources to implement aggressive control measurements against mosquito proliferation. A potential strategy to raise community awareness regarding mosquito proliferation is building a live map of mosquito incidences using smartphone apps and crowdsourcing. In this paper, we explore the possibility of identifying Aedes aegypti mosquitoes using machine learning techniques and audio analysis captured from commercially available smartphones. In summary, we downsampled Aedes aegypti wingbeat recordings and used them to train a convolutional neural network (CNN) through supervised learning. As a feature, we used the recording spectrogram to represent the mosquito wingbeat frequency over time visually. We trained and compared three classifiers: a binary, a multiclass, and an ensemble of binary classifiers. In our evaluation, the binary and ensemble models achieved accuracy of 97.65% ($\pm$ 0.55) and 94.56% ($\pm$ 0.77), respectively, whereas the multiclass had an accuracy of 78.12% ($\pm$ 2.09). The best sensitivity was observed in the ensemble approach (96.82% $\pm$ 1.62), followed by the multiclass for the particular case of Aedes aegypti (90.23% $\pm$ 3.83) and the binary (88.49% $\pm$ 6.68). The binary classifier and the multiclass classifier presented the best balance between precision and recall, with F1-measure close to 90%. Although the ensemble classifier achieved the lowest precision, thus impairing its F1-measure (79.95% $\pm$ 2.13), it was the most powerful classifier to detect Aedes aegypti in our dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源